信息播报 |
成就营销
当前位置: 首页 > 整合营销 > 成就营销 >
不完善数据下的精确营销战略设计
发布日期:2011-08-18  中国电力营销网   来源:未知

 

——上海文新集团东方票务的案例研究

王震国     黄沛     牛志勇

 

一、引言

近年来,随着市场竞争环境的日趋激烈,越来越多的成功企业致力于通过数据挖掘(Data Mining)、组合优化(Combinatorial Optimization)、联合分析(Conjoint Analysis)等管理科学分析工具开展精确营销 (Precise Marketing)活动。例如,Amazon.com通过诸如协作过滤(Collaborative Filtering)和关联规则挖掘(Association Rule Mining)等技术工具向客户推荐书籍和礼品;博彩业巨头哈瑞娱乐(Harrah’s Entertainment)基于先进的数据挖掘和决策科学营销(Decision-Science Marketing),通过激发客户需求和关联消费,在经济不景气的大环境下取得平均22%的年增长;最近炙手可热的窄告(Narrow Ad.)理念则是通过语义分析、自动聚类、模式识别、知识管理、行为分析及人工智能等技术实现信息的精确传递。归纳而言,精确营销的通常路径是,利用数据自动收集、行为特征分析、关联规则挖掘等技术形成全方位、多视角的客户档案(Customer Profiles),通过建立和实施高效的推荐系统(Recommendation Systems),开展有针对性的营销活动。

近年来,由不完善数据质量引发的在市场营销、组织沟通、质量控制等方面的严重管理问题越来越引起企业和学者的关注。尽管许多公司基于最新信息科技研发了不少改善数据质量的实用工具和方法,学术界在收集、管理、评估数据质量等方面也提出了很多极具建设性的方案和建议,然而总体而言,上述努力仍大多局限于数据的精确性方面,缺乏超越信息系统领域的更广阔思维;同时,由于精确营销方案涉及经济学、营销学、运筹学、信息科学、人工智能等跨学科特性,容易导致学术研究和解决方案相对局限于少数领域,缺乏综合性的战略视角和整体框架。本文以文新集团东方票务的精确营销实践为出发点,通过构建明确的以客户为中心的数据总线架构,贯彻实施基于增强型价值网络的数据收集战略,并在数据分析过程中引入创新性的变量拓展,试图从战略理念角度探索困扰现有企业营销决策的数据不完善问题。

二、文献回顾

知识经济时代,如何基于信息技术准确传递和有效利用高质量的信息数据,越来越成为企业建立和提升核心竞争能力的关键所在。Richard Marsh(2005)指出,商业数据/信息是组织最有价值的资产之一,企业必须采取有效措施,确保此类资产能够被准确、及时和恰当的利用。Richard Y. Wang等学者(1998)率先正式提出了信息产品化管理的观点,即为了准确传递和有效利用高质量的信息,企业应从正式产品(而非副产品)的高度去重视、管理和传递信息产品。Donald Ballou等学者(1998)将数据的产生和维护过程定义为信息制造系统(IMS, Information Manufacturing System),并分别从数据生产者和数据消费者两个视角,强调数据价值和成本的权衡、信息产品的时效、质量和成本。Yang W. Lee等(2003)将企业对知识信息的复杂处理视为完整的数据生产流程(Data Production Process),并细分为三个不同功能领域:数据收集、存储维护和分析利用,对应于上述不同功能,企业应明确相应的工作角色:数据收集员(Data Collector)、数据管理员(Data Custodian)和数据利用员(Customer Consumers),为有效提升知识管理质量,企业应格外重视数据收集员的作用。Richard Y. Wang等(1998)提出了信息产品管理(IPM, Information Product Management)四原则:深入理解客户信息需求、精细化信息处理流程、根据产品生命周期理论管理信息、指派信息产品管理员(IPM)负责信息处理和产出。

所谓数据质量,通常指数据相对于用户需求的适宜程度,基于不同视角可以进一步细分为不同维度,如内在(Intrinsic)数据质量、环境(Contextual)数据质量、代表(Representational)性、可获取性(Accessibility)等维度。准确性(Accuracy)、完整性(Integrity)、一致性(Consistency)、完全性(Completeness)、有效性(Validity)、及时性(timeliness)、易得性(Accessibility)、依从性(Compliance)等,并提出了提升全数据质量管理的四步骤。由于数据质量问题涉及的环节众多,且影响因素非常复杂,多年来企业界和学术界基于不同的数据质量标准维度,进行了很多有助提升数据质量水平的有益探索和尝试。Ken Orr(1998)提出了基于系统理论的反馈-控制系统(Feedback-Control System, FCS)模型,通过开展基于用户的数据质量活动(包括稽核、培训、评估等),解决动态环境下数据萎缩(Atrophy)、信息过载(Overload)等关键问题,不断提升企业的数据质量。

近年来,尽管学术界和企业界从质量管理和技术处理角度探索了很多改善数据质量的管理方法和工具手段,然而就整体而言,相关研究和尝试大多局限于技术层面,缺乏提升数据质量管理效果的战略视野和整体框架。Anany V. Levitin等(1998)从战略层面分析了企业普遍面临的不完善数据现象,认为数据质量问题首先是由于数据或信息和企业战略脱节造成的,很多企业在制定战略过程中忽略数据来源、质量和层次问题,因而造成贯彻战略迫切需要的数据极度匮乏,另一方面,传统的数据源难以适应企业战略的改变,很多公司缺乏可靠的数据收集来源整体框架。Tom Duncan等(1998)从组织层次提出了超越客户范畴的关系营销的更广阔视角——利益攸关方(Stakeholders),从公司信息源、营销组合信息源和营销交流信息源三个层次,建立基于信息交换的关系营销管理模型,以提升企业与利益攸关方(包括客户、供应商、渠道商、竞争者、社区、媒体等等)的信息交换与关系管理效率。Murthi等(2003)基于价值网络理论提出了精确营销的增强型价值网络(Enhanced Value Net) 架构,从战略视角考察公司与其它关键方的互动效果,以更好实施企业的精确营销战略。

战略理念的引入,为解决企业营销过程中的大量数据问题拓展了崭新的视角与广阔的思路。本文在借鉴增强型价值网络理论基础上,从战略层面系统整合企业所有利益相关者的信息资源,以期为精确营销活动的实施提供持续提升的战略视野;通过构建以客户为中心的数据总线架构,对整个精确营销流程进行系统的规划分析,以全面整合企业的数据资源支持准确的营销决策;通过在系统层面明晰分析变量的设计和拓展路径,提升已有数据利用效率和建模分析的整体效果。

三、不完善数据下的精确营销战略设计架构

(一)以客户为中心的数据总线架构。

随着市场竞争环境的改变,越来越多的企业至少从概念上已经准备好要推动“以客户为中心”(Customer Centered)的经营机制,并开始运用诸如客户关系管理(CRM)、数据仓库(Data Warehouse)、企业资源管理(ERP)、供应链管理(SCM)、电子商务(e-Commerce)等管理工具,致力于通过更富有战略性的方法和功能更有效率的管理手段,更“精确”的为细分客户群提供更大价值。然而,由于支撑营销决策的数据基础极不完善,导致投资巨大的信息管理工具难以发挥预期作用,现有企业的营销解决方案大多依然停留在理念和流程层面。

建立和运营更富战略性的以客户为中心的企业,关键在于全面整合内外资源、通过及时有效的跨组织沟通协调和高价值的商业流程,更精确的满足客户真正需求,持续提升客户满意度和忠诚度。就数据支持层面而言,精确的营销决策需要收集、筛选全方位的信息来源,例如供应商、客户、渠道、竞争对手、传媒、市场等等,及时制定系统、有效的营销方案,全面整合企业内外的相关资源,例如联络中心、零售店面或分支机构、网站以及合作伙伴,实现营销活动的有效执行。本文试图从支撑企业营销决策的信息和数据入手,通过确保数据收集、数据处理、客户刻画和精确营销流程中的科学决策方法和正确数据基础的紧密结合,建立以客户为中心数据总线(Customer Centered Data Bus,CCDB)架构(如图1所示)。

如何基于不完善数据建立有效的推荐系统(Recommendation Systems)开展精确营销,是一直以来困扰许多公司的难题。一方面,企业管理系统收集的大量数据往往存在分散、模糊、矛盾、冗余、不完整等诸多问题,难以基于此形成大致准确的客户概况(Customer Profile);另一方面,尽管数据清理(Data Cleanse)和数据修正(Data Correction)可以确保数据挖掘、联合分析等分析工具所需的严谨数据基础条件,然而,过滤加工后的分析变量往往失去营销决策支持的完整意义,容易产生“GIGO”的尴尬结果。我们认为,有效的精确营销决策依赖于“原始数据—分析变量—客户档案—推荐系统”(Data-Variable-Profile-System, DVPS)流程的每个环节,需要对整个精确营销流程进行全面系统的规划分析。CCDB架构将精确营销活动分为数据收集、数据处理、客户描述、建模分析四个阶段,致力于全面整合企业内外资源,将以客户为中心的理念贯彻到数据总线的每个节点,为开展精确营销活动提供有效的决策支撑。

图略

1、数据收集。随着决策科学的发展以及企业对营销活动的重视,精确营销所需的数据来源越来越广泛。企业内部的数据来源主要包括以下方面:企业联络中心记录的客户交互记录、营销部门开展的市场调研、其它部门通过商业智能系统(ERP、CRM等)传递的相关信息等等;企业外部的数据来源则更为广泛,包括从合作伙伴、竞争对手、营销渠道到各类传媒、专业信息提供商等众多信息源。

由于信息来源的不同和衡量口径的差异,收集的数据可能是分散、冗余或非结构化的,甚至可能是不准确、不完全或不一致的“脏数据”(Dirty Data)。对于语法(Syntactical)、语义(Semantic)方面的数据异常(Data Anomalies),可以通过分解(Parsing)、转换(Transformation)、完整性约束强制(Integrity Constraint Enforcement)、重复消除(Duplicate Elimination)和统计方法(Statistical Methods)等数据清理手段,处理形成相对完整的内部数据库;对于范围异常(Coverage Anomalies)和业务价值缺陷,则需要进一步引入商业规则(Business Rules)、系统标准(System Standards),结合外部数据源进行更深入的数据处理。

2、数据处理。数据处理(Data Processing)是指将包含在多种数据源中的信息转化为适合诸如数据挖掘、模式发现等分析工具需要的数据抽象概念,为构建分析变量、建立客户档案和通过相关算法模型推断客户行为提供基础。数据处理是知识发现过程的关键阶段,此阶段的工作量约占全部数据挖掘过程的60%,并在很大程度上直接影响最终营销决策的准确性。

高效的数据处理不但需要了解企业盘根错节的业务系统和错综复杂的数据组织方式,熟悉多种数据处理工具和相关领域专家知识,而且需要基于战略视野确保数据处理流程能够适应企业未来可能的业务系统变化的。为有效解决数据处理中的复杂问题,需要从战略层面确定数据处理和整合的整体框架(如图2所示)。图略

上述框架可以指引企业数据处理流程更好的适应公司运作的各个环节的需求,以实现持续的数据整合性。其中,数据处理策略可以帮助企业制定和贯彻管理公司数据资产的战略,令组织成员认可数据作为企业关键资源的重要地位,明确信息资源整合的公司目标;数据组织致力于优化信息授权、任务责任、结构构建、职务设计、技能培训和绩效管理;数据交流可以帮助组织中每个成员更好的理解其在数据价值链中的影响;维护管理涉及元数据(Metadata)、商务规则(Business Rules)和数据模型等要素,用以保障数据在不同组织间的一致性、标准化、权限问题,成功的数据管理能够通过组织结构和处理流程设计实现数据的前置(Proactively)获取、存档和发布,以适应公司业务层面的变动;数据处理体系架构和数据管理紧密相联,包括数据体系、技术手段和微观架构;数据处理灵活性主要用来确保系统、流程和业务单元符合数据处理策略,提升要素适应环境变化的能力。

数据处理从技术上可以分为数据选取(Data Selection)、数据集成(Data Integrity)、数据清理(Data Cleansing)、数据归约(Data Reduction)四个步骤。精确营销中的数据选取是从公司的原始数据库中选出与营销和知识发现任务相关的数据表项;“数据集成”指将多个数据源合并成一致的数据存储;数据清理主要解决数据库中的空缺值、错误数据、孤立点和噪声等问题;数据归约是指通过变换数据的表示形式来得到可以保持原有数据完整性的相对较小的数据集,提高挖掘模式的质量,降低时间复杂度。

3、客户描述。客户描述是指将数据处理所获取的分析变量整理形成客户概况档案,以帮助营销人员通过与已有的客户更有效的交流,提供更好的服务,以挽留客户。客户档案是精确营销建模的输入变量,通常可以分为三类:基于客户人口统计学(Demographic)数据的基本概况(Basic Profile)、基于客户历史行为的偏好概况(Preference Profile)以及和关联规则(Association Rules)相关的规则概况(Rule Profile)。常见的客户档案包括如下属性(如表1所示)。

表1:常用的客户档案属性

属性类别

属性名称与描述

示 例

基本概况

基本信息

姓名、年龄、性别

居住区域;联系方式

文化程度、民族背景、家庭结构

职业情况、收入水平、购买力

地理信息

文化、种族、家庭背景

经济条件、收入情况或购买能力

偏好概况

购买行为

消费频率、购买周期、购买金额

抱怨频率、满意度、倾向性

对产品、服务或品牌的认知度

媒体偏好、信息来源

会员注册方式

态度认知

产品认知

信息认知

购买行为

规则概况

生活方式

消费习惯、消费倾向等等

消费品位、企业消费

购买规律

4、建模分析。建模分析的本质是基于统计学、计量经济学、消费者行为学理论建立科学分析模型,推断客户偏好、购买行为、咨询行为是确保营销行为能够“精确”指向最终客户的本质手段。通常而言,常用的精确营销建模可分为四类(如表2所示)。

表2:常用的精确营销建模及典型应用

模型分类

常用工具或技术

典型应用示例

预测模型

回归分析模型

预测客户对公司产品或服务的反应;

预测客户对公司特定营销活动的反应;

预测公司促销活动或定价策略效果;

预测不同因素对客户行为的影响;

预测客户流失概率;

Logit和Probit模型

神经网络等人工智能建模

Bayesian网络模型

危险率(Hazard Rate)模型

聚类、分类模型

聚类(Clustering)模型

确定客户属于何种市场细分;

分析细分客户群体特征;

公司应如何细分客户

潜在等级(Latent Class)细分

分类回归树(CART)

自动交互探测(AID)模型

最近临技术

偏好模型

期望价值(Expectancy Value)模型

不同属性客户的价值;

备选属性效用对客户的价值;

应该向客户推荐何种产品或服务;

联合分析(Conjoint Analysis)

理想点(Ideal Point)模型

层次贝叶斯(HB)分析

协同过滤(Collaborative filtering)

其它模型

遗传算法

 

粗糙集(Rough Set)

可视化分析

文本挖掘

 

(二)基于增强型价值网络的数据收集战略。

只有将数据与公司业务决策和战略发展紧密结合起来,数据才能真正成为企业的核心资产。进入知识经济时代后,尽管信息渠道和收集技术都有了极大的改善,数据来源和收集问题仍是企业进行科学决策的主要约束之一。由于缺乏系统的战略思维,营销活动通常仅仅定位于组织内部的策略性层面,导致相关部门的营销决策正面临“被海量数据淹没,却饥饿于有效知识”的挑战。随着市场环境的变化,企业竞争的内涵已经超越个体的层面;客户最终价值的实现,也越来越依赖于包括企业自身、供应商、渠道商、合作伙伴甚至竞争者共同形成的增强型价值网络(Enhanced Value Net)。因此,在驱动企业精确营销的数据收集方面,也应该引入相关的战略理论进行规划和架构。

就本质而言,大部分数据不完善问题可以归结于企业在数据基础方面缺乏系统的战略架构。一方面,精确的预测客户行为和市场反馈需要的大量属性特征数据,不但需要协调企业内部各数据来源(例如联络中心、公司网站、销售人员等等)形成规范的数据库,而且需要综合考虑来自竞争对手、合作伙伴、供应商、渠道商等方方面面的信息,由于现有企业大多缺乏市场营销数据共享利用的战略机制或规划,导致在客户档案、分析建模阶段预测客户特征和行为时往往缺乏更为全面和详尽的参考信息;另一方面,很多运营导向的数据仓库缺乏明确的营销分析目标和全面的客户属性提取规划,系统在记录信息时通常存在多多益善的倾向,不但容易侵犯用户隐私,引起客户警惕和反感,而且会使数据处理和分析建模阶段遭遇“维度灾难”(Curse of Dimensionality)。为此,本文基于企业增强型价值网络理论和明确的最终营销需求,提出了系统的数据收集战略框架(如图3所示)。

根据增强型价值网络理论框架,企业在纵向维度(交易维度)与供应商和客户交互,在横向维度(竞合维度)与竞争者和合作伙伴交互。从纵向维度来看,企业与上游的供应商、渠道商以及下游的渠道商和客户交互;大部分日常业务发生在交易维度,企业可基于此维度收集的数据构建系统的产业数据库和客户数据库;横向维度主要反应竞争对手和合作伙伴的行为对公司营销策略和效果的影响,例如通过收集竞争对手的产品、价格、渠道、促销(4P)属性信息为全面预测客户特征和行为提供参考依据;基于与商业伙伴的长期合作机制,实现客户数据资源的共享和转化。

图略

本文试图通过上述数据收集战略框架为公司精确营销能力的持续提升提供有意义的探索和尝试。一方面,上述框架从战略层面全面分析了所有利益相关者(Stakeholder)的战略或行为对公司营销活动的可能影响。例如,产品差异化(Product Differentiation)、价格歧视性(Price Discrimination)、先行者优势(First-mover Advantage)、产品组合(Product Bundle)销售等;另一方面,上述框架从战略上为精确营销活动的实施提供了持续提升的战略视野,形成学习(Learning)—匹配(Matching)—评估(Evaluation)—再学习的持续改善机制。“学习”过程主要包括数据的收集和处理;“匹配”过程主要指根据客户档案预测客户偏好和行为,并采取有针对性的营销活动;“评估”过程是指对学习和匹配的效果根据一定的标准进行评判,并加以改善,为今后更有效的精确营销活动提供依据。

(三)精确营销分析变量设计与拓展的战略路径。

现有企业在精确营销实践过程中典型问题可以归结为数据来源的单一化和数据处理效率低下化。在前文中,我们已尝试通过基于增强型价值网络的数据收集战略框架解决数据来源贫乏的问题,那么,如何基于收集到的数据构建准确的客户档案和支持精确营销建模的决策变量?一直以来,上述转换过程似乎仅仅是数据分析人员的份内工作,主要关注也仅局限于数据的处理技巧和转换的技术工具。在数据处理和分析过程中,由于缺乏营销领域专家的参与,往往因部分数据缺失或前提条件缺乏,导致大量数据无法准确建模或者建模分析的结果对营销决策难以产生实质意义等尴尬现象,最终使得公司耗资巨大,积累和管理的数据的利用价值大为降低。本文认为,导致上述问题的主要原因在于,在变量设计时缺乏清晰的战略规划,导致建模过程中变量条件不佳;在分析处理过程中缺乏专业的营销知识,失去了通过市场调研、变量拓展等手段,补充相关变量使已有数据“变废为宝”、“点石成金”的机会。为此,本文提出了精确营销分析变量的设计和拓展路径图(如图4所示)。

图略

本文基于变量设计和拓展的战略视角,将精确营销分析变量的构建过程分为基础数据、业务数据和分析变量三个阶段。前两阶段主要指基于增强型价值网络的数据收集战略框架收集相关信息,形成构建分析变量所需的基础数据库和业务数据库,其中业务规则指与营销或行业相关的系统标准或商业惯例,中间数据(Intermediate Data)指经过系统、算法、规则等处理后的数据;补充数据主要指通过市场调研(Survey)等手段获取的数据;第三阶段将分析变量细分为基础变量、参考变量、概要变量三类,以更好的为预测目标客户行为提供建模依据。

具体而言,基础变量(Groundwork Variables)主要指基于公司已有数据构建的相关变量,如产品和客户的基本信息,客户交互行为变量等;参考变量(Reference Variables)指基于市场调研等手段搜集到的数据构建的变量,可以用来详细了解客户深度特征(如客户反馈、品牌认知、媒体偏好等)和市场竞争情况(如主要竞争对手、产品差异等);概要变量(Summary Variables)是基于业务数据和其它变量,根据营销决策需要生成的有助于进一步深入判断客户属性和行为特征的中间变量。概要变量是拓展精确营销分析变量的重要环节:一方面,概要变量包含并综合了已有数据、业务规划(营销导向)和其它变量的有效信息,已经初步具有对客户特征的推断能力;另一方面,概要变量是精确营销建模分析的重要输入变量,决策价值高,信息规范性强,不但拓展了数据和变量来源,而且可以有效解决模型应用前提条件不满足等瓶颈现象。常用的精确营销建模变量见表3。

 

表3:精确营销常用的建模变量示例

变量类型

变量名称

主要用途

基础变量

客户基本属性

客户姓名、年龄等人口统计学变量;

购买、咨询等消费者行为变量;

为建模分析提供基本的变量依据

产品基本属性

产品类别、价格、目标群体偏好等

参考变量

客户参考属性

客户文化层次、收入水平、职业情况等人口统计学变量;

客户偏好、态度、倾向、历史营销活动反馈等消费者态度/行为变量

为精确细分客户提供详细特征变量

产品参考属性

和竞争对手、替代产品等相比,公司产品4P等属性差异

衡量客户的价格敏感度、产品特征偏好等深度特征

概要变量

数量类

单次最大消费数量

判断客户购买目的(个体消费/群体消费)

累计最大消费数量

价格类

单次最高购买单价

判断客户消费偏好和档次(高/中/低)

累计最高购买单价

金额类

单次最高购买金额

判断客户消费能力大小

累计最高购买金额

累计购买金额,平均购买金额

时间类

最近消费(或联系)时间

判断客户对公司产品或服务的依赖(/满意/忠诚)程度

平均消费频率

 

四、东方票务的精确营销实践

(一)文新集团东方票务简介。

文汇新民联合报业集团(简称文新集团)是中国最大的报业集团之一,由创刊60年的文汇报和创刊69年的新民晚报联合组建而成。现办有约20种媒体,并拥有东方艺术中心、东方票务公司、东方演艺、上海视觉艺术学院等著名文化设施和机构,是全国经营业绩最佳的新闻媒体之一。近年来,文新集团在文化产业链整合和赢利模式创新方面取得了突破性的进展。集团以投资、控股、参股、合作等方式组建了十二家各具特色的、又有内在业务联系、互相融合的专业文化公司,重点打造音舞、会展、动漫和影视四大文化板块,着重发展音舞原创、票务网络、剧场经营和艺术教育四个重点项目,致力于以产品为基础,通过拥有剧场、票务、销售网络、人才培养平台和创意产业孵化基地,全面整合文化产业链资源,努力将集团建成全国前列、亚洲一流、世界著名的多元化经营的大型文化媒体集团。

文新集团旗下的东方票务有限公司由文汇新民联合报业集团和上海牡丹影视传播有限公司共同出资组建,是一家以技术和管理实力支撑为核心竞争力的,以创新思维、全新票务营销模式,拥有票券服务平台的专业票务销售公司。公司立足上海,积极发展面向全国及海外的票务销售联盟,以各类剧场、演艺公司、文艺团体共享联盟为发展目标,为用户提供及时的文艺演出、体育赛事信息,以及最便利的票券销售服务。并努力构筑节目选择、票券营销、销售跟踪的服务链。公司采用高密度的配售网络,多渠道的营销手段,通过设立旗舰店、售票网点、电话中心和网络建立销售渠道。

经过多年努力,文新集团在信息化管理方面已初步实现了“应用集成化、管理透视化、商务协同化、流程柔性化”,集团公众电话服务中心(962288)也被评为2005年中国最佳呼叫中心。在数据基础方面,文新集团在读者俱乐部、外籍人士俱乐部、公众电话服务中心等方面均构建了相对比较完善的数据库平台,拥有数十万级的会员用户。东方票务一直努力建设自身的营销平台和数据平台,在会员数据积累方面也取得了一定成绩。同时,由于文新集团旗下公司的产业关联性较强,集团的会员用户与东方票务的目标客户具有较强的重合度,相互转换的潜在可能性较高。因此,与国内同行相比,东方票务开展精确营销的数据基础具有优势。

然而,东方票务的信息化项目在设计阶段主要着眼于运营导向,关注的是如何有效适应呼叫中心和网上订票的正常运作,并未考虑营销支持功能和客户管理功能。具体而言,东方票务仅仅具有初步功能的业务(咨询或交易)数据库,更遑论基于前瞻视野的数据规划。由于客户数据库、票品数据库等建设的滞后,失去了基于客户关系管理开展有针对性营销活动的技术基础,同时也无法有效转换和利用文新集团已有会员或客户资源,形成产业资源整合的战略优势。

(二)东方票务的精确营销的战略设计。

由于东方票务已有的数据库仅仅基于业务层面(咨询或交易)对历史记录作简单记录,缺乏基于客户层面和产品层面进行建模分析的基本技术条件,需要对已有数据库进行进一步清理、补充、拓展、规范和整合。为此,我们一方面通过技术手段对业务数据库进行处理,根据用户姓名和电话等关键词组合对客户进行提取,形成初步的客户信息数据库,根据购票内容、价格等关键词进行提取形成初步的票品数据库;另一方面,我们通过文新集团的962288呼叫中心进行对483位客户进行了详细的市场调研,进一步补充客户和票品数据内容。通过上述转换、扩展和整合,形成了包括交易数据库、咨询数据库、客户数据库、营销活动历史数据库和票品数据库五个部分相对比较齐全的内部数据库(如图5所示)。

客户数据库包括客户标识、人口统计信息、行为分析数据、模型评分等内容。其中,客户标识(Customer ID),用以联接到交易数据库、咨询数据库、营销活动历史数据库,以得到客户表现的即时快照,更有效的跟踪客户的活动行为、预测他们的消费偏好和消费倾向;模型评分则记录基于各种数据挖掘模型得出的客户评分情况,如响应率、激活概率、利润贡献率、潜在价值等等。

票品数据库则包含了东方票务所出售票品的名称、类型、目标群体偏好、演出/比赛日期、演出/比赛地点、售票性质(自售/代售)、佣金、售票完成率、总体利润等情况。票品类型对应于票品的内容属性(如音乐会、演唱会、话剧、歌剧、地方戏剧、体育、画展等等,可细分为十一大类、二十九个小类);目标群体偏好则是根据东方票务出售票品所对应的主要消费群体的可能偏好特征(如传统、时尚、流行、运动、儿童、艺术等等十大类)。

营销活动历史数据库主要包括客户标识、个体基本信息、营销活动细节、营销活动总结、模型评分、预测数据等内容。交易数据库包括客户票识、交易流水号、票品名称、订购数量、订购单价、订票要求等基本信息;咨询数据库包括客户标识、咨询目的、票务咨询类别、详细内容、累积来电次数等内容;

为了充分发挥文新集团在文化产业链整合方面已有的数据基础优势,我们基于增强型价值网络的数据收集战略框架,构建了长期的数据来源收集机制。在竞合维度上,补充和整合读者俱乐部、公众电话服务平台、外籍人士俱乐部等伙伴方的客户数据资源;同时补充和完善根据市场调研确立的竞争对手在票品方面的详细信息。在交易维度上,通过对票品数据库的细化和完善,进一步确定目标客户的类型和偏好;通过对各售票渠道数据的整合,构建具有全方位属性的客户数据库(如图5所示)。

图略

为了提升精确营销分析和预测的准确性,并充分考虑建模变量的来源和质量问题,我们东方票务将客户档案的数据基础归为三种类型:人口统计学数据、消费者行为/态度数据(Behavioral Data)、规则数据(如表4所示),以期通过三者的综合运用,可以增强精确营销建模的效率和精度。

表4:东方票务客户档案的数据基础

数据类型

具体内容

获得途径

人口统计学数据

客户年龄段、性别;居住区域;联系方式

票务信息与咨询信息数据库中已经存在

文化程度、家庭构成、收入水平、职业情况

通过市场调查问卷、会员计划等方式获取

消费者行为/态度数据

票品内容、购票单价、购票数量、购票要求、来电次数、订票时间;

票务信息与咨询信息数据库中已经存在

单次最高购票单价、单次最大购票数量、单次最高购票金额;累积最高购票单价、累积最大购票数量、累积最高购票金额;

利用软件编程方法获取

规则数据

客户偏好、消费习惯、消费倾向等等

通过市场调查问卷、会员计划等方式获取

五、结论

不完善数据是现代企业开展精确营销活动的主要障碍,容易引起企业的错误营销决策,导致巨大 的损失。已有的研究大多致力于从技术层面局限于数据质量问题研究改善方法,然而,由于数据不完善问题错综复杂,涉及企业内外的方方面面,因而此问题的解决迫切需要引入系统视野和战略理论。本文以文新集团东方票务的精确营销实践为出发点,通过构建以客户为中心的数据总线架构,系统规划整合精确营销流程;通过贯彻实施基于增强型价值网络的数据收集战略,全面整合和有效利用企业所有利益相关者的信息资源;通过明晰分析变量的设计和拓展路径,并在数据分析时构建概要变量,进一步提升建模分析变量的有效性,为最终的精确营销决策提供输入变量支撑。

本文的创新之处主要表现为,首次基于战略视角探讨如何在不完善数据下为营销决策提供精确支持,通过对精确营销流程的每个环节所需的数据质量提升,进行系统的设计和前瞻性规划,试图从源头上提升企业的营销数据基础起点;在数据收集战略上借鉴增强型价值网络理论,充分考虑交易维度和竞合维度上所有利益相关者可能的信息贡献;在变量设计规划时,创新性的提出概要变量方法,以有效提升精确营销建模的结果质量。

(作者:上海交通大学安泰管理学院博士研究生)


中国电力营销网投稿热线:010-63438088/63361156 新闻投稿QQ:点击这里给我发消息 1914306897
邮箱:keymedia#powersp.com.cn(请将#换成@)
相关信息
2013年11月19-21日,主题为技术共建、精益求新 的全国输配...